Scattering Matrices

Bjørn Kolbrek

June 11, 2023

When doing some work that included scattering matrices, I found that the expressions given by Kemp did not fully match up. Here follows a rederivation of the equations.

Rederivation

Going back to the fundamental equations, and assuming that eq. (6.20) is supposed to sum pressures at both sides of the discontinuity, we have

$$
\begin{align*}
\left(\mathbf{P}_{+}^{(1)}+\mathbf{P}_{-}^{(1)}\right) & =F\left(\mathbf{P}_{+}^{(2)}+\mathbf{P}_{-}^{(2)}\right) \tag{1}\\
\left(Z_{c}^{(2)}\right)^{-1}\left(\mathbf{P}_{+}^{(2)}-\mathbf{P}_{-}^{(2)}\right) & =F^{T}\left(Z_{c}^{(1)}\right)^{-1}\left(\mathbf{P}_{+}^{(1)}-\mathbf{P}_{-}^{(1)}\right) \tag{2}
\end{align*}
$$

We can rearrange to get, for pressure:

$$
\begin{equation*}
\left(\mathbf{P}_{+}^{(2)}+\mathbf{P}_{-}^{(2)}\right)=F^{-1}\left(\mathbf{P}_{+}^{(1)}+\mathbf{P}_{-}^{(1)}\right) \tag{3}
\end{equation*}
$$

giving

$$
\begin{align*}
& \mathbf{P}_{+}^{(2)}=F^{-1}\left(\mathbf{P}_{+}^{(1)}+\mathbf{P}_{-}^{(1)}\right)-\mathbf{P}_{-}^{(2)} \tag{4}\\
& \mathbf{P}_{-}^{(2)}=F^{-1}\left(\mathbf{P}_{+}^{(1)}+\mathbf{P}_{-}^{(1)}\right)-\mathbf{P}_{+}^{(2)} \tag{5}
\end{align*}
$$

and for velocity, using $\mathcal{H}=Z_{c}^{(2)} F^{T}\left(Z_{c}^{(1)}\right)^{-1}=\left(Y_{c}^{(2)}\right)^{-1} F^{T} Y_{c}^{(1)}, Y_{c}$ being the characteristic admittance $Y_{c}=Z_{c}^{-1}$:

$$
\begin{equation*}
\mathbf{P}_{+}^{(2)}-\mathbf{P}_{-}^{(2)}=\mathcal{H}\left(\mathbf{P}_{+}^{(1)}-\mathbf{P}_{-}^{(1)}\right) \tag{6}
\end{equation*}
$$

giving

$$
\begin{align*}
& \mathbf{P}_{+}^{(2)}=\mathbf{P}_{-}^{(2)}+\mathcal{H}\left(\mathbf{P}_{+}^{(1)}-\mathbf{P}_{-}^{(1)}\right) \tag{7}\\
& \mathbf{P}_{-}^{(2)}=\mathbf{P}_{+}^{(2)}-\mathcal{H}\left(\mathbf{P}_{+}^{(1)}-\mathbf{P}_{-}^{(1)}\right) \tag{8}
\end{align*}
$$

This will produce, for $\mathbf{P}_{+}^{(2)}$

$$
\begin{gather*}
\mathbf{P}_{+}^{(2)}=F^{-1}\left(\mathbf{P}_{+}^{(1)}+\mathbf{P}_{-}^{(1)}\right)-\mathbf{P}_{+}^{(2)}+\mathcal{H}\left(\mathbf{P}_{+}^{(1)}-\mathbf{P}_{-}^{(1)}\right) \tag{9}\\
\mathbf{P}_{+}^{(2)}=\frac{1}{2}\left(F^{-1}+\mathcal{H}\right) \mathbf{P}_{+}^{(1)}+\frac{1}{2}\left(F^{-1}-\mathcal{H}\right) \mathbf{P}_{-}^{(1)} \tag{10}
\end{gather*}
$$

and for $\mathbf{P}_{-}^{(2)}$

$$
\begin{gather*}
\mathbf{P}_{-}^{(2)}=F^{-1}\left(\mathbf{P}_{+}^{(1)}+\mathbf{P}_{-}^{(1)}\right)-\mathbf{P}_{-}^{(2)}-\mathcal{H}\left(\mathbf{P}_{+}^{(1)}-\mathbf{P}_{-}^{(1)}\right) \tag{11}\\
\mathbf{P}_{-}^{(2)}=\frac{1}{2}\left(F^{-1}-\mathcal{H}\right) \mathbf{P}_{+}^{(1)}+\frac{1}{2}\left(F^{-1}+\mathcal{H}\right) \mathbf{P}_{-}^{(1)} \tag{12}
\end{gather*}
$$

Sum and difference become

$$
\begin{align*}
\mathbf{P}_{+}^{(2)}+\mathbf{P}_{-}^{(2)}= & \\
& \left\{\frac{1}{2}\left(F^{-1}+\mathcal{H}\right)+\frac{1}{2}\left(F^{-1}-\mathcal{H}\right)\right\} \mathbf{P}_{+}^{(1)} \\
+ & \left\{\frac{1}{2}\left(F^{-1}-\mathcal{H}\right)+\frac{1}{2}\left(F^{-1}+\mathcal{H}\right)\right\} \mathbf{P}_{-}^{(1)} \\
& =F^{-1} \mathbf{P}_{+}^{(1)}+F^{-1} \mathbf{P}_{-}^{(1)} \tag{13}
\end{align*}
$$

$$
\begin{align*}
\mathbf{P}_{+}^{(2)}-\mathbf{P}_{-}^{(2)}= & \\
& \left\{\frac{1}{2}\left(F^{-1}+\mathcal{H}\right)-\frac{1}{2}\left(F^{-1}-\mathcal{H}\right)\right\} \mathbf{P}_{+}^{(1)} \\
+ & \left\{\frac{1}{2}\left(F^{-1}-\mathcal{H}\right)-\frac{1}{2}\left(F^{-1}+\mathcal{H}\right)\right\} \mathbf{P}_{-}^{(1)} \\
& =\mathcal{H} \mathbf{P}_{+}^{(1)}-\mathcal{H} \mathbf{P}_{-}^{(1)} \tag{14}
\end{align*}
$$

Expressing this in the same format as (6.24), we get

$$
\binom{\mathbf{P}_{+}^{(2)}}{\mathbf{P}_{-}^{(2)}}=\left(\begin{array}{cc}
\mathcal{E} & -\mathcal{F} \tag{15}\\
-\mathcal{F} & \mathcal{E}
\end{array}\right)\binom{\mathbf{P}_{+}^{(1)}}{\mathbf{P}_{-}^{(1)}}
$$

where

$$
\begin{align*}
\mathcal{E} & =\frac{1}{2}\left(\mathcal{H}+F^{-1}\right) \tag{16}\\
\mathcal{F} & =\frac{1}{2}\left(\mathcal{H}-F^{-1}\right) \tag{17}
\end{align*}
$$

This is different from Kemp (6.24) in that the (1,2) element of equation (15) is negative, otherwise the expressions for \mathcal{E} and \mathcal{F} are identical.

According to Kemp eq. (5.15), for the plane wave case,

$$
\binom{p_{+}^{(2)}}{p_{-}^{(2)}}=\frac{1}{1-r_{1,2}}\left(\begin{array}{cc}
1 & -r_{1,2} \tag{18}\\
-r_{1,2} & 1
\end{array}\right)\binom{p_{+}^{(1)}}{p_{-}^{(1)}}
$$

where $r_{1,2}$ is the reflection coefficient when waves are incident from side 1. Other reflection and transmission coefficients are expressed in terms of $r_{1,2}$. This supports the hypothesis that Kemp's (6.24) is wrong, and that the (1,2 and $(2,1)$ elements of the matrix should be identical.

