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Abstract

The concept of input impedance is a very useful representation of the resonance
characteristics of an acoustic horn. A large part of this work discusses its theo-
retical and experimental determination. It is demonstrated that higher modes,
waves with a non-uniform pressure distribution on the plane perpendicular to
the axis of the instrument, should be used in the theory of wave propagation in
musical instruments featuring a flared bell as an improvement on assuming plane

wave propagation.

The impedance at the output end of an acoustic horn is known as the radiation
impedance. The existing method for the calculation of the multimodal radiation
impedance of a cylindrical tube terminated in an infinite baffle is reviewed. New
work is then presented for the calculation of the radiation impedance of a rect-
angular duct terminated in an infinite baffle. An existing method for calculating
the input impedance of an acoustic horn of cylindrical cross-section starting from
the radiation impedance is utilised. The method is then formulated for horns of

rectangular cross-section. Pressure field calculations are also presented.



In acoustic pulse reflectometry an acoustic pulse is directed into the object
under test and the sampled reflections analysed to provide the internal profile and
the input impedance. It is shown that better agreement is observed between the
experimental and theoretical input impedance when higher modes are included

in the calculation.

Currently the bore reconstruction analysis assumes plane wave propagation
since this provides a simple formula for the frequency independent reflection and
transmission coefficients at changes in cross-section in a pipe. The multimodal
reflection and transmission coefficients are, however, frequency dependent. A
higher-mode method is presented to calculate the reflection of an impulse with
the aim of improving the technique’s accuracy for horns which feature a large
rate of flare at the end. Digital filters designed to represent losses and cancel
reflection from the sound source are also shown to increase accuracy and make

possible the measurement of longer objects.
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